National Repository of Grey Literature 318 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Intracranial hemorrhage localization in axial slices of head CT images
Kopečný, Kryštof ; Chmelík, Jiří (referee) ; Nemček, Jakub (advisor)
This thesis is focused on detection of intracranial hemorrhage in CT images using both one-stage and two-stage object detectors based on convolutional neural networks. The fundamentals of intracranial hemorrhage pathology and CT imaging as well as essential insight into computer vision and object detection are listed in this work. The knowledge of these fields of studies is a starting point for the implemenation of hemorrhage detector. The use of open-source CT image datasets is also discussed. The final part of this thesis is a model evaluation on a test dataset and results examination.
Detection of cells in confocal microscopy images
Hubálek, Michal ; Štursa, Dominik (referee) ; Škrabánek, Pavel (advisor)
The goal of the thesis was to create an application that automatically detects healthy cardiomyocytes from images captured by a confocal microscope. The thesis was created based on the specific needs of researchers from the Slovak Academy of Sciences.The application will facilitate and increase the efficiency of their research,because until now they have to evaluate the images and search for suitable cells manually. The RetinaNet convolutional neural network is used for detection and has been implemented in a user-friendly desktop application. The application also automatically records and stores coordinates of detected cells which can be used for capturing cells in higher image quality. Another advantage of the developed application is its versatility, which allows to train detection on other data, making it applicable to other projects. The result of this work is a functional, standalone and intuitive application that is ready to be used by researchers.
A convolutional neural network for image segmentation
Mitrenga, Michal ; Petyovský, Petr (referee) ; Jirsík, Václav (advisor)
The aim of the bachelor thesis is to learn more about the problem of convolutional neural networks and to realize image segmentation. This theme includes the field of computer vision, which is used in systems of artificial intelligence. Special Attention is paid to the image segmentation process. Furthermore, the thesis deals with the basic principles of artificial neural networks, the structure of convolutional neural networks and especially with the description of individual semantic segmentation architectures. The chosen SegNet architecture is used in a practical application along with a pre-learned network. Part of the work is a database of CamVid images, which is used for training. For testing, a custom image database is created. Practical part is focused on CNN training and searching for unsuitable parameters for network learning using SW Matlab.
Vehicle Control via Reinforcement Learning
Maslowski, Petr ; Uhlíř, Václav (referee) ; Šůstek, Martin (advisor)
The goal of this thesis is a creation of an autonomous agent that can control a vehicle. The agent utilizes reinforcement learning that uses neural networks. The agent interprets images from the front vehicle camera and selects appropriate actions to control the vehicle. I designed and created reward functions and then experimented with hyperparameters setup. Trained agent simulate driving on the road. The result of this thesis shows a possible approach to control an autonomous vehicle agent using machine learning method in CARLA simulator.
Vehicle Counting in Still Image
Vágner, Filip ; Juránek, Roman (referee) ; Špaňhel, Jakub (advisor)
The goal of this work is to compare models of convolutional neural networks designed to count vehicles in a static image using density estimation with a focus on different sizes of objects in the scene. A total of four models were evaluated - Scale Pyramid Network, Scale-adaptive CNN, Multi-scale fusion network and CASA-Crowd. The evaluation was done on three data sets - TRANCOS, CARPK, PUCPR+. Scale Pyramid Network achieved the best results. The model reached 5.44 in the Mean Absolute Error metric and 9.95 in the GAME(3) metric on TRANCOS dataset.
Identification of vertebrae type in CT data by machine learning methods
Matoušková, Barbora ; Kolář, Radim (referee) ; Chmelík, Jiří (advisor)
Identification of vertebrae type by machine learning is an important task to facilitate the work of medical doctors. This task is embarrassed by many factors. First, a spinal CT imagining is usually performed on patiens with pathologies such as lesions, tumors, kyphosis, lordosis, scoliosis or patients with various implants that cause artifacts in the images. Furthermore, the neighboring vertebraes are very similar which also complicates this task. This paper deals with already segmented vertebrae classification into cervical, thoracic and lumbar groups. Support vector machines (SVM) and convolutional neural networks (CNN) AlexNet and VGG16 are used for classification. The results are compared in the conclusion.
Reinforcement Learning for RoboCup
Bočán, Hynek ; Škoda, Petr (referee) ; Smrž, Pavel (advisor)
Goal of this thesis is creation of artificial intelligence capable of controlling robotic soccer player simulated in SimSpark environment. Agent created is expanding capabilities of existing third party agent which provides set of basic skills such as localization on the field, dribbling with the ball and omnidirectional walk. Responsibility of the created agent is to pick the best action based current state of the game. This decision making was implemented using reinforcement learning and its method Q-learning. State of the game is transformed into 2D picture with several planes. This picture is then analyzed using deep convolution neural network implemented using C++ and DeepCL library.
Algorithmic Solution for Determining the Age of a Person Based on 2D Photography Using Artificial Intelligence
Bednář, Pavel ; Goldmann, Tomáš (referee) ; Drahanský, Martin (advisor)
Automated person's age estimation from a facial image is one of the challenges in the field of artificial intelligence and machine learning. Age estimation is often a non-trivial complexity for a person, unlike other biological characteristics such as determining gender or race. Information about an individual's age is very important for certain situations. For example, when committing an offense or crime, the amount of the sentence is co-determined by age. This information can also be used in the analysis of customers of a commercial entity and the subsequent adjustment of the offer. The aim of this work is to be able to extract his age from a photograph of a human face. The algorithm consists of two modules. If the first module says that the person is under 14 years old, the image will go to the second module. Furthermore, another version of the algorithm is proposed with an added module focused on selected facial features. In all modules transformations are performed on the image and their results are averaged. Finally, the algorithm is evaluated on standard datasets for age estimation and compared with state-of-the-art methods in this area.
Position Control With Camera
Ficek, Dominik ; Honec, Peter (referee) ; Richter, Miloslav (advisor)
Thesis focuses on camera’s pose estimation in set world coordinate system. This coordinate system is defined by position of predefined marks. Cursor control is selected as a pose estimation feedback. Aim of this thesis is designing real time cursor control with camera methods. In theoretical part of this thesis is dedicated to explanation of basic theory of image processing, artificial intelligence in computer vision and 3D reconstruction. Following theoretical chapter is a chapter dedicated to the design of two position control with camera methods. First method defines fixed coordinate system and cursor is controlled by camera’s movement. Second method utilizes fixed camera and movable coordinate system. Further chapters are dedicated to realization of designed methods, their evaluation and comparison.
Vehicle Counting in Still Image
Jelínek, Zdeněk ; Juránek, Roman (referee) ; Špaňhel, Jakub (advisor)
The main goal of this thesis was to compare different approaches to vehicle counting by density estimation. Four convolutional neural networks were tested - Counting CNN, Hydra CNN, Perspective-Aware CNN and Multi-column CNN. The evaluation of these models was done on three different datasets. The Perspective-aware CNN has achieved the most accurate results across all datasets. This model has reached 2.86 Mean Absolute Error on the PUCPR+ dataset, proving that it is the most suitable for the vehicle counting problem.

National Repository of Grey Literature : 318 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.